3.1035 \(\int (a+b \cos (c+d x))^{5/2} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^4(c+d x) \, dx\)

Optimal. Leaf size=407 \[ \frac {\tan (c+d x) \left (8 a^2 (2 A+3 C)+42 a b B+15 A b^2\right ) \sqrt {a+b \cos (c+d x)}}{24 d}-\frac {\left (8 a^2 (2 A+3 C)+54 a b B+3 b^2 (11 A-16 C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{24 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (8 a^3 (2 A+3 C)+66 a^2 b B+a b^2 (59 A+96 C)+48 b^3 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{24 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (8 a^3 B+20 a^2 b (A+2 C)+30 a b^2 B+5 A b^3\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{8 d \sqrt {a+b \cos (c+d x)}}+\frac {(6 a B+5 A b) \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^{3/2}}{12 d}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a+b \cos (c+d x))^{5/2}}{3 d} \]

[Out]

-1/24*(54*a*b*B+3*b^2*(11*A-16*C)+8*a^2*(2*A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(s
in(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+1/24*(66*a^
2*b*B+48*b^3*B+8*a^3*(2*A+3*C)+a*b^2*(59*A+96*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(si
n(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+1/8*(5*A*b^3
+8*a^3*B+30*a*b^2*B+20*a^2*b*(A+2*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1
/2*c),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+1/12*(5*A*b+6*B*a)*(a
+b*cos(d*x+c))^(3/2)*sec(d*x+c)*tan(d*x+c)/d+1/3*A*(a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^2*tan(d*x+c)/d+1/24*(15*A
*b^2+42*a*b*B+8*a^2*(2*A+3*C))*(a+b*cos(d*x+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 1.57, antiderivative size = 407, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.209, Rules used = {3047, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ \frac {\tan (c+d x) \left (8 a^2 (2 A+3 C)+42 a b B+15 A b^2\right ) \sqrt {a+b \cos (c+d x)}}{24 d}+\frac {\left (8 a^3 (2 A+3 C)+66 a^2 b B+a b^2 (59 A+96 C)+48 b^3 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{24 d \sqrt {a+b \cos (c+d x)}}-\frac {\left (8 a^2 (2 A+3 C)+54 a b B+3 b^2 (11 A-16 C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{24 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (20 a^2 b (A+2 C)+8 a^3 B+30 a b^2 B+5 A b^3\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{8 d \sqrt {a+b \cos (c+d x)}}+\frac {(6 a B+5 A b) \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^{3/2}}{12 d}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a+b \cos (c+d x))^{5/2}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

-((54*a*b*B + 3*b^2*(11*A - 16*C) + 8*a^2*(2*A + 3*C))*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(
a + b)])/(24*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + ((66*a^2*b*B + 48*b^3*B + 8*a^3*(2*A + 3*C) + a*b^2*(59*A
 + 96*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(24*d*Sqrt[a + b*Cos[c + d
*x]]) + ((5*A*b^3 + 8*a^3*B + 30*a*b^2*B + 20*a^2*b*(A + 2*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2
, (c + d*x)/2, (2*b)/(a + b)])/(8*d*Sqrt[a + b*Cos[c + d*x]]) + ((15*A*b^2 + 42*a*b*B + 8*a^2*(2*A + 3*C))*Sqr
t[a + b*Cos[c + d*x]]*Tan[c + d*x])/(24*d) + ((5*A*b + 6*a*B)*(a + b*Cos[c + d*x])^(3/2)*Sec[c + d*x]*Tan[c +
d*x])/(12*d) + (A*(a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C - B*c*d + A*d^2)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(
c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + (c
*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*c*
d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)
))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx &=\frac {A (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{3} \int (a+b \cos (c+d x))^{3/2} \left (\frac {1}{2} (5 A b+6 a B)+(2 a A+3 b B+3 a C) \cos (c+d x)-\frac {1}{2} b (A-6 C) \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx\\ &=\frac {(5 A b+6 a B) (a+b \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{6} \int \sqrt {a+b \cos (c+d x)} \left (\frac {1}{4} \left (15 A b^2+42 a b B+4 a^2 (4 A+6 C)\right )+\frac {1}{2} \left (6 a^2 B+12 b^2 B+a b (11 A+24 C)\right ) \cos (c+d x)-\frac {3}{4} b (3 A b+2 a B-8 b C) \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx\\ &=\frac {\left (15 A b^2+42 a b B+8 a^2 (2 A+3 C)\right ) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {(5 A b+6 a B) (a+b \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{6} \int \frac {\left (\frac {3}{8} \left (5 A b^3+8 a^3 B+30 a b^2 B+20 a^2 b (A+2 C)\right )+\frac {1}{4} b \left (6 a^2 B+24 b^2 B+a b (13 A+72 C)\right ) \cos (c+d x)-\frac {1}{8} b \left (54 a b B+3 b^2 (11 A-16 C)+8 a^2 (2 A+3 C)\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {\left (15 A b^2+42 a b B+8 a^2 (2 A+3 C)\right ) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {(5 A b+6 a B) (a+b \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {\int \frac {\left (-\frac {3}{8} b \left (5 A b^3+8 a^3 B+30 a b^2 B+20 a^2 b (A+2 C)\right )-\frac {1}{8} b \left (66 a^2 b B+48 b^3 B+8 a^3 (2 A+3 C)+a b^2 (59 A+96 C)\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{6 b}+\frac {1}{48} \left (-54 a b B-3 b^2 (11 A-16 C)-8 a^2 (2 A+3 C)\right ) \int \sqrt {a+b \cos (c+d x)} \, dx\\ &=\frac {\left (15 A b^2+42 a b B+8 a^2 (2 A+3 C)\right ) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {(5 A b+6 a B) (a+b \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {1}{16} \left (-5 A b^3-8 a^3 B-30 a b^2 B-20 a^2 b (A+2 C)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx-\frac {1}{48} \left (-66 a^2 b B-48 b^3 B-8 a^3 (2 A+3 C)-a b^2 (59 A+96 C)\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx+\frac {\left (\left (-54 a b B-3 b^2 (11 A-16 C)-8 a^2 (2 A+3 C)\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{48 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\\ &=-\frac {\left (54 a b B+3 b^2 (11 A-16 C)+8 a^2 (2 A+3 C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{24 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (15 A b^2+42 a b B+8 a^2 (2 A+3 C)\right ) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {(5 A b+6 a B) (a+b \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {\left (\left (-5 A b^3-8 a^3 B-30 a b^2 B-20 a^2 b (A+2 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{16 \sqrt {a+b \cos (c+d x)}}-\frac {\left (\left (-66 a^2 b B-48 b^3 B-8 a^3 (2 A+3 C)-a b^2 (59 A+96 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{48 \sqrt {a+b \cos (c+d x)}}\\ &=-\frac {\left (54 a b B+3 b^2 (11 A-16 C)+8 a^2 (2 A+3 C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{24 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (66 a^2 b B+48 b^3 B+8 a^3 (2 A+3 C)+a b^2 (59 A+96 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{24 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (5 A b^3+8 a^3 B+30 a b^2 B+20 a^2 b (A+2 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{8 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (15 A b^2+42 a b B+8 a^2 (2 A+3 C)\right ) \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {(5 A b+6 a B) (a+b \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec ^2(c+d x) \tan (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.40, size = 519, normalized size = 1.28 \[ \frac {\frac {8 b \left (6 a^2 B+a b (13 A+72 C)+24 b^2 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+4 \sec ^2(c+d x) \sqrt {a+b \cos (c+d x)} \left (\sin (2 (c+d x)) \left (4 a^2 (2 A+3 C)+27 a b B+\frac {33 A b^2}{2}\right )+8 a^2 A \tan (c+d x)+2 a (6 a B+13 A b) \sin (c+d x)\right )-\frac {2 i \csc (c+d x) \left (8 a^2 (2 A+3 C)+54 a b B+3 b^2 (11 A-16 C)\right ) \sqrt {-\frac {b (\cos (c+d x)-1)}{a+b}} \sqrt {\frac {b (\cos (c+d x)+1)}{b-a}} \left (b \left (b \Pi \left (\frac {a+b}{a};i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )-2 a F\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )\right )-2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}+\frac {2 \left (48 a^3 B+8 a^2 b (13 A+27 C)+126 a b^2 B-3 b^3 (A-16 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}}{96 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

((8*b*(6*a^2*B + 24*b^2*B + a*b*(13*A + 72*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)
/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + (2*(48*a^3*B + 126*a*b^2*B - 3*b^3*(A - 16*C) + 8*a^2*b*(13*A + 27*C))*S
qrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] - ((2*I)
*(54*a*b*B + 3*b^2*(11*A - 16*C) + 8*a^2*(2*A + 3*C))*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Co
s[c + d*x]))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d
*x]]], (a + b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(
a - b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))
/(a*b*Sqrt[-(a + b)^(-1)]) + 4*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^2*(2*a*(13*A*b + 6*a*B)*Sin[c + d*x] + ((
33*A*b^2)/2 + 27*a*b*B + 4*a^2*(2*A + 3*C))*Sin[2*(c + d*x)] + 8*a^2*A*Tan[c + d*x]))/(96*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^4, x)

________________________________________________________________________________________

maple [B]  time = 11.27, size = 2791, normalized size = 6.86 \[ \text {Expression too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2*b-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b^2*C*(a-b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((
2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(Ellip
ticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2)))+2*b^3*B*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x
+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+6*C*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*c
os(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF
(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-2*b^3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(
a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a
-b))^(1/2))+2*a*(3*A*b^2+3*B*a*b+C*a^2)*(-1/a*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+
1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)+1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a
-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-
b))^(1/2))-1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c
)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*(sin(1/2*d*x+1/
2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)
^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*
d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1
/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))-2*b*(A*b^2+3*B*a*b+3*C*a^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+
1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d
*x+1/2*c),2,(-2*b/(a-b))^(1/2))+2*a^2*(3*A*b+B*a)*(-1/2/a*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*
sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^2+3/4*b/a^2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4
*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)-1/8*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1
/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos
(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+3/8/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^
(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))
^(1/2))-3/8*b^2/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+
1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-1/2*(sin(1/2*d*x
+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2
*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))-3/8/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(
1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(c
os(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*b^2)+2*A*a^3*(-1/3/a*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+
b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^3+5/12*b/a^2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*
c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^2-1/24*(16*a^2+15*b^2)/a^3*cos(1/2*d*x+1/2
*c)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)+5/48*b^2/a^2*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*
d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(
1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(co
s(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(
1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1
/2))+1/3/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*
b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-5/16*b^2/a^2*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1
/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+5/16/a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(
1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(co
s(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^3+1/4/a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/
(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*
b/(a-b))^(1/2))+5/16*b^3/a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*sin
(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))))/si
n(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^4, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^4,x)

[Out]

int(((a + b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^4, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**4,x)

[Out]

Timed out

________________________________________________________________________________________